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a b s t r a c t 

Learning to rank has become one of the most popular research areas in recent years. A series of learning 

to rank algorithms have been proposed to improve the ranking performance. In this work, we propose 

three learning to rank algorithms by directly optimizing evaluation measures based on the AdaRank al- 

gorithms. We name the three algorithms as AdaRank-ERR, AdaRank-MRR and AdaRank-Q, which optimize 

three evaluation measures, Expected Reciprocal Rank (ERR), Mean Reciprocal Rank (MRR), and Q-measure 

(Q), based on AdaRank, respectively. Furthermore, we propose a novel feature generation framework FG- 

FIREM to enhance the ranking performance. The framework generates effective document ranking fea- 

tures based on the ranking scores assigned by the proposed algorithms, and enriches the original feature 

space of learning to rank using the generated features for improving the ranking performance. We eval- 

uate the proposed framework on three datasets from LETOR3.0 and the web dataset MSLR-WEB10K. The 

experimental results demonstrate that our framework can effectively improve the ranking performance. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Ranking is one of the most important components in informa-

ion retrieval (IR) systems. To produce effective ranking lists, learn-

ng to rank, as a series of supervised ranking methods, has been

idely used. Learning to rank utilizes machine-learning technolo-

ies to construct ranking models that solve ranking problems in

nformation retrieval for document ranking. In the process of rank-

ng model construction, the training data involve a set of queries

nd retrieved documents with respect to each query. These doc-

ments are represented as feature vectors, in which features are

xtracted based on the similarity of each query-document pair. IR

ystems are designed to learn a ranking model based on the train-

ng data. The learned model is then fed into the testing process to

core each document for a given query, and sort the documents by

he relevance scores in a descending order. The final ranking list of

ocuments is then provided to the user who submits the query

s the search results. To accurately evaluate the ranking perfor-

ance of different ranking models, various IR evaluation measures

ave been proposed and applied to evaluate the effectiveness of

ocument retrieval, including the frequently-used evaluation mea-
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ures Mean Average Precision (MAP) and Normalized Discounted

umulative Gain (NDCG) ( Manning, Raghavan, & Schütze, 2008 ),

nd the newly developed evaluation measures Expected Recipro-

al Rank (ERR) ( Chapelle, Metzler, & Zhang, 2009 ) and Q-measure

Q) ( Sakai, 2004a ). However, it remains a great challenge on how

o improve the ranking performance in terms of these new evalu-

tion measures. 

To improve the ranking performance, more than 80 ranking al-

orithms have been proposed to improve the ranking performance

 Tax, Bockting, & Hiemstra, 2015 ), such as RankNet, ListNet, Rank-

oost, AdaRank, SVMMAP and LambdaMART ( Asadi & Lin, 2013;

urges, Shaked, & Renshaw, 2005; Cao, Qin, & Liu, 2007; Duh &

ujin, 2012; Freund & Schapire, 1997; Fuhr, 1989; Joachims, 2002;

i, Burges, & Wu, 2007; Lin, Lin, Xu, Abraham,& Liu, 2015; Song,

g, Leung, & Fang, 2014; & Ma, 2012; Xu & Li, 2007; Yue, Finley,

 Radlinski, 2007 ). Meanwhile, some studies have focused on the

eneration of effective document features to improve the ranking

erformance. For example, Amini, Truong, and Goutte (2008) pro-

osed a novel strategy to assign relevance labels to the unlabeled

nstances based on the labeled instances, and used these instances

o extend the feature space of the training data. Duh and Kirch-

off (2008) exploited the kernel-based Principal Component Anal-

sis (kernel-based PCA) to extract effective features to enrich the

raining data. Lin, Lin, Yang, and Su (2009) used Singular Value De-

omposition (SVD) to extract effective feature vectors from the un-

abeled data set (the training and test sets) for enhanced ranking

https://doi.org/10.1016/j.eswa.2019.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.05.004&domain=pdf
mailto:zhlin@dlut.edu.cn
mailto:xubo@dlut.edu.cn
mailto:hflin@dlut.edu.cn
mailto:xukan@dlut.edu.cn
mailto:pingzhang@mail.dlut.edu.cn
https://doi.org/10.1016/j.eswa.2019.05.004


76 Y. Lin, B. Xu and H. Lin et al. / Expert Systems With Applications 133 (2019) 75–85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W  

a  

F  

a  

s  

a  

w  

e  

i

2

 

a  

h  

a  

p  

p  

a  

r

 

t  

t  

t  

b  

r  

m  

a  

s  

c  

b  

m  

o  

r  

t  

S  

R

 

o  

s  

o  

t  

c  

t  

t  

s  

2  

Z  

p  

e  

r  

S  

(  

A  

a  

R

2

 

m  

d  

i  

t  

q  
models. Lin, Lin, Xu, and Sun (2013) used the smoothing methods

of language models for generating new feature vectors based on

multiple parameters. These studies have investigated extended fea-

tures to improve the ranking models and achieved enhanced rank-

ing performance, which inspire us to generate more effective doc-

ument features for constructing more powerful ranking models. 

In this paper, we propose a novel feature generation frame-

work for the optimization of learning to rank. The framework

contains two components. The first component involves three

new AdaRank-based ranking algorithms for the improvement of

the ranking performance, and the second component extends the

feature space of learning to rank based on the proposed three

AdaRank-based ranking algorithms. The AdaRank ( Xu & Li, 2007 )

ranking algorithm employs the classical machine learning method

AdaBoost ( Freund & Schapire, 1997 ) as the core technology, and

merges IR evaluation measures into its loss function for the list-

wise ranking optimization. Previous experimental results on the

LETOR3.0 datasets ( Qin, Liu, & Xu, 2007 ) have demonstrated that

the listwise AdaRank algorithm can yield better ranking perfor-

mance than the pointwise and the pairwise algorithms. 

The original AdaRank algorithm is designed for optimizing

two IR evaluation measures, Mean Average Precision (MAP) and

Normalized Discounted Cumulative Gain (NDCG). In this paper, we

extend the original AdaRank algorithm to optimize three other

evaluation measures, namely Expected Reciprocal Rank (ERR),

Mean Reciprocal Rank (MRR) and Q-measure. We denote these

three methods as AdaRank-ERR, AdaRank-MRR and AdaRank-Q, re-

spectively. The three evaluation measures are newly developed for

ranking performance evaluation in different learning to rank tasks.

The ERR evaluation measure is based on the cascade model, which

considers both the ranking positions of documents and the depen-

dency relationship among documents in the ranking list. The MRR

evaluation measure counts the average reciprocal ranks of results

for all the queries, where ‘rank’ refers to the rank position of the

first relevant document in the ranking list for each query. The Q-

measure is a graded-relevance version of average precision, which

inherits both the reliability of average precision and the multi-

grade relevance capability of Average Weighted Precision (AWP)

( Kando, Kuriyama, & Yoshioka, 20 01; Sakai, 20 04b ). More details

about these evaluation measures will be introduced in the IR eval-

uation measure section. 

Directly optimizing above-mentioned different evaluation mea-

sures using AdaRank can produce diverse ranking lists of doc-

uments for the same query, which may contribute to the

improvement of retrieval performance. Therefore, we propose to

treat the ranking scores obtained from different ranking lists as

new features to enhance the learned ranking models. Based on this

idea, we construct 11 new features based on the proposed three

AdaRank-based algorithms, and examine the effectiveness of these

features from two respects: training ranking models based solely

on the generated features and based on the combination of the

generated features and the original features from the benchmark

learning to rank datasets. We perform several experiments on

these two feature sets to test whether our framework can gener-

ate effective ranking features. We evaluate our framework on three

LETOR3.0 benchmark datasets (OHSUMED, TD20 03 and TD20 04)

( Qin et al., 2007 ) and a large web dataset MSLR-WEB10K ( http://

research.microsoft.com/en-us/projects/mslr/ ). The experimental re-

sults demonstrate that our framework can significantly improve

the ranking performance. 

The main contributions of this paper are summarized as

follows. (1) We propose three learning to rank algorithms,

AdaRank-ERR, AdaRank-MRR and AdaRank-Q, to improve the

AdaRank algorithm. The proposed algorithms can directly optimize

three evaluation measures: ERR, MRR and Q-measure. We test the

ranking performance of these algorithms in our experiments. (2)
e treat the ranking scores generated by the proposed algorithms

s new features, and propose a feature generation framework

GFIREM. The framework can generate effective ranking features

nd improve the ranking performance. (3) We enrich the feature

paces for learning to rank based on AdaRank-ERR, AdaRank-MRR

nd AdaRank-Q in FGFIREM, and combine the generated features

ith the original features for enhanced ranking models. The

xperimental results demonstrate that FGFIREM can significantly

mprove the ranking performance. 

. Related work 

In recent years, learning to rank has become a popular research

rea in information retrieval. Many learning to rank algorithms

ave been proposed to improve ranking performance. These

lgorithms generally can be divided into three categories: the

ointwise approach, the pairwise approach and the listwise ap-

roach ( Liu, 2009 ). These three categories of approaches deal with

 single document, a pair of documents and a list of documents,

espectively. 

The input space of the pointwise approach includes the fea-

ure vector of each single document and the output space contains

he predicted relevance degree of each single document. Therefore,

he pointwise ranking algorithms can be viewed as the regression-

ased algorithms or the classification-based algorithms. The rep-

esentative algorithms include the Polynomial Regression Function

ethod ( Fuhr, 1989 ) and McRank ( Li et al., 2007 ). The main dis-

dvantage of the pointwise approach lies in that it does not con-

ider the relative ranking positions of documents. To further in-

orporate the relative ranking positions, the pairwise approach has

een proposed by considering the preference order of each docu-

ent pair. The pairwise approach treats the pairwise preferences

f document pairs as the input instances. The output space is the

elative relevance degree of each document pair. The represen-

ative algorithms include RankNet ( Burges et al., 2005 ), Ranking

VM ( Joachims, 2002 ), Frank ( Tsai, Liu, Qin, Chen, & Ma, 2007 ) and

ankBoost ( Freund, Iyer, Schapire, & Singer, 2003 ). 

Furthermore, the listwise approach treats the entire ranking list

f documents with respect to the same query as the input in-

tance. The listwise output space is either the relevance degrees

f all documents with respect to the query or the ranking list of

he documents. The listwise approach can be divided into two sub-

ategories. The first sub-category measures the difference between

he permutation yielded by the ranking model and the ground

ruth permutation. Two representative methods belonging to this

ub-category are RankNet ( Burges et al., 2005 ), ListNet ( Cao et al.,

007; Xu, Liu, Lu, Li, & Ma, 2008 ) and ListMLE ( Xia, Liu, Wang,

hang, & Li, 2008 ). The second sub-category of the listwise ap-

roach defines the ranking loss function based on the bound of IR

valuation measures. In this sub-category, the representative algo-

ithms include the SVM-based methods SVMMAP ( Yue et al., 2007 ),

VMNDCG ( Chakrabarti, Khanna, & Sawant, 2008 ) and SVMERR

 Zhang, Lin, Lin, & Wu, 2011 ), and other popular algorithms,

daRank ( Xu & Li, 2007 ), LambdaRank ( Burges, Ragno, & Le, 2006 )

nd LambdaMART ( Donmez, Svore, & Burges, 2009; Yilmaz &

obertson, 2010 ). 

.1. Motivation of this work 

Existing studies on learning to rank have indicated that docu-

ent features are crucial in constructing ranking models. Effective

ocument features contribute more to the improvement of rank-

ng performance. Traditional ranking features are mainly based on

extual statistics such as term frequency and inverse document fre-

uency. Since there exist a limited number of textual statistics, the

http://research.microsoft.com/en-us/projects/mslr/
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anking performance may be further enhanced with more power-

ul features. To this end, we intend to develop a feature genera-

ion framework for learning to rank, which seeks to automatically

enerate effective ranking features based on a hand-crafted origi-

al feature set from benchmark learning to rank datasets. The gen-

rated features are obtained from certain effective ranking mod-

ls. We propose three learning to rank algorithms based on the

daRank algorithm, and use them to generate effective document

eatures for enriching the feature space. We combine the generated

eatures and the original features to learn more effective ranking

odels for enhanced ranking performance. Experimental results

how that our approach can consistently improve retrieval perfor-

ance on the test queries. 

. IR evaluation measures 

.1. Mean reciprocal rank 

The Mean Reciprocal Rank (MRR) evaluation measure is a statis-

ic measure for evaluating the ranking performance on a sample of

iven queries. The reciprocal rank of the document list for a certain

uery is the multiplicative inverse of the rank of the first relevant

ocument: 1 for the first place, 1/2 for the second place, 1/3 for

he third place and so on. The mean reciprocal rank is the aver-

ge of the reciprocal ranks of all the queries, which is defined as

ollows. 

RR = 

1 

| Q| 
| Q| ∑ 

i =1 

1 

ran k i 
(1) 

here rank i represents the rank position of the first relevant doc-

ment for the i th query. Q is the query set, and | Q | is the number

f queries in Q . MRR counts the rank positions of the first relevant

ocuments for each query. Since the first relevant document can

lways satisfy the information needs of search users to the utmost

xtent, MRR has been widely used to evaluate the ranking perfor-

ance for various information retrieval systems. 

.2. Expected reciprocal rank 

The Expected Reciprocal Rank (ERR) evaluation measure is

ased on the cascade model. The cascade model stems from the

osition-based model. The position-based model assumes that the

elected documents by users are only determined by the ranking

ositions of the documents. However, the assumption is not always

eld in real retrieval scenarios, because the browsing behavior of a

ser can be affected by multiple factors. To deal with the problem,

he cascade model was proposed by assuming that users view the

etrieval results from the top position to the bottom position, and

t each position, the information needs of the users can be satis-

ed with a certain probability. 

Based on the cascade model, the ERR measure supposes that

he document at the i th position of the document ranking list can

atisfy the information needs of the user with a certain probability

 i . Therefore, the likelihood that the user has been satisfied at the

 -th position can be formulized as follows. 

−1 
 

i =1 

(1 − R i ) R r (2) 

The equation means that the user is not satisfied with the top

-1 documents and is satisfied with the r -th document. The prob-

bility R can be represented as a function of document relevance

egree, such as Normalized Discounted Cumulative Gain (NDCG).

he probability R based on NDCG can be defined as follows. 

 (g) = 

2 

g − 1 

g max 
, g ∈ { 0 , ..., g max } (3)
2 f
here g represents the relevance degree and g max represents the

elevance degree of the most relevant document. Since the rank

ositions of documents can largely affect the overall retrieval per-

ormance, a utility function ϕ is then integrated into the ERR mea-

ure, which is similar to the discount function used in NDCG. We

efine the utility function as ϕ( r ) = 1/ r in our study. Finally, the

RR measure can be formulized as follows. 

RR = 

N ∑ 

r=1 

1 

r 

r−1 ∏ 

i =1 

(1 − R i ) R r (4) 

here N is the number of documents in the ranking list. Existing

tudies have demonstrated that ERR can more accurately evaluate

he ranking performance by considering the discount of ranking

ompared with the position-based measures. 

.3. Q-measure 

The Q-measure (Q) evaluation metric inherits both the reliabil-

ty of Average Precision (AP) and the multi-grade relevance capa-

ility of Average Weighted Precision (AWP) ( Sakai, 2004b ). In this

ection, we first introduce these two basic evaluation measures, AP

nd AWP. The AP measure has been widely used in IR tasks, which

onsiders the positions of relevance documents on the ranking list,

nd accumulates the precision at different cutoff positions of rele-

ant documents. A formal definition of AP is as follows. 

P = 

∑ N 
r=1 (P @ r · rel(r)) 

n q 

(5) 

here n q is the number of the relevant documents with respect to

he query q, r is the rank position, N is the number of retrieved

ocuments, rel () is a binary indication function reflecting the rele-

ance of the document at the r -th position. 

The AWP measure was designed for the ranking performance

valuation with multi-grade relevance. Let J ( r ) be the relevance

egree of the document at the r- th position. The relevance de-

rees for learning to rank tasks are three-fold: definitely relevant

 J ( r ) = 2), partially relevant ( J ( r ) = 1) and irrelevant ( J ( r ) = 0). The gain

t the r- th position can be calculated using a function g ( r ) = gain

 J ( r )). If the document at the r- th position is irrelevant, we set

 ( r ) = 0. In our method, we set the function gain () as a linear func-

ion, namely g(r) = αJ(r), where α is a constant. The cumulative gain

t the r- th position can be formulated as follows: 

cg(r) = g(r) + cg(r − 1) r > 1 

g(1) = g(1) r = 1 (6) 

Let cg ∗( r ) be the cumulative gain at the r-th position in an ideal

anking list. The AWP measure is then defined as follows. 

WP = 

1 

R 

∑ 

1 ≤r≤l 

J(r) 
cg(r) 

cg ∗ (r) 
(7) 

here R represents the number of relevant documents. The AWP

easure can be treated as an extension of the AP measure. How-

ver, it still suffers from a serious problem. Namely, if the num-

er of relevant documents R and the idea cumulative gain cg ∗( r )

re set as constants, AWP will not distinguish the difference be-

ween the following two systems: System A that sorts a relevant

ocument at the r- th position ( r < R ) and System B that sorts a

elevant document at the r ’ - th position ( r ’ > R ). The AP measure

s free from this problem. To solve this problem, Q-measure is

roposed by introducing the notion of bonus gain bg ( r ) at the r- th

osition ( Sakai, 2004a ). In the paper, we follow the definition of

-measure according to the work ( Sakai & Song, 2011 ). This ver-

ion of Q-measure defines bg ( r ) = g ( r ) + 1 if g ( r ) > 0, otherwise

g ( r ) = 0. Then, the cumulative bonus gain at the r- th position is

ormulized as follows. 
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cbg (r) = bg(r) + cbg(r − 1) r > 1 

cbg(1) = bg(1) r = 1 (8)

where bg ( r ) equals to cg ( r ) + C ( r ). C ( r ) is the number of relevant

documents from the first position to the r- th position in the rank-

ing list. C ( r ) is defined as follows. 

(r) = 

r ∑ 

k =1 

J(k ) (9)

Based on the above definition, Q-measure at the l- th cutoff can

be formulized as follows. 

Q@ l = 

1 

min (l, R ) 

l ∑ 

r=1 

J(r) 
C(r) + βcg(r) 

r + βcg ∗ (r) 
(10)

The value of Q-measure is equal to 1 when the ranked list is in

an ideal order. The parameter β ( β≥ 0) is a persistence parameter

for Q-measure. If β = 0, Q-measure is reduced to the binary aver-

age precision. In this paper, we set β = 1 according to the paper

( Sakai & Song, 2011 ). 

4. Methodology 

4.1. Feature generation framework 

In this section, we introduce the proposed F eature G eneration

F ramework based on I nformation R etrieval E valuation M easures

(FGFIREM) in detail. We first propose three learning to rank algo-

rithms, and then use these algorithms to generate effective rank-

ing features for constructing ranking models. Finally, we use the

learned ranking models based on the generated features by FG-

FIREM to test the ranking performance. To help understand our

framework FGFIREM, we list the notations and definitions in our

method in Table 1 . 

Algorithm 1 presents the workflow of the FGFIREM framework.

There are two components in this framework: the feature gener-

ation component and the ranking model learning component. The

feature generation component involves three proposed learning to

rank algorithms based on the AdaRank algorithm. We treat these

three AdaRank-based algorithms as the feature generation algo-

rithm FG_A, and learn ranking models using FG_A on the training

set S . The ranking scores obtained from the learned ranking modes

are then used as the generated new feature sets F_S and F_T for

the training set S and the test set T , respectively. The dimension of

the generated feature set depends on the number of FG_A. Finally,

the original feature set O_ S is combined with the generated fea-

ture set F_S as the new training set E_S. Similarly, the new test set

E_T is generated. The ranking model learning component adopts

the learning to rank algorithm R_A to learn new ranking models
Table 1 

Notations for the FGFIREM framework. 

Notations Definitions 

FGFIREM Feature generation framework based on information retrieval evalua

S Training set 

T Test set 

FG_A Feature generation algorithm 

R_A Ranking algorithm (Learning to rank algorithm) 

O_S Original features of training set 

O_T Original features of test set 

F_S New feature set for training set 

F_T New feature set for test set 

E_S Training set with the original features and the new features 

E_T Test set with the original features and the new feature 

AdaRank-M Ranking model based on the original features that directly optimizes

AdaRank-M 

∗ Ranking model based on the generated features that directly optimiz

AdaRank-M 

∗∗ Ranking model based on the combination of the original features an
ased on F_S and E_S, respectively. The ranking performance of the

earned models is evaluated on the corresponding test set F_T and

_T. 

In this framework, the feature generation algorithms FG_A and

he ranking algorithm R_A can be the same or different. Our pre-

iminary experimental results indicate that using the same learning

o rank algorithms for FG_A and R_A can produce better ranking

erformance. This may be due to the fact that the same algorithm

an make the most of the generated features to improve the rank-

ng performance continuously during the process of the feature

eneration and the model training. In our framework, we adopt

he proposed AdaRank-based ranking algorithms as FG_A and also

dopt the same algorithms as R_A for model training. 

.2. Directly optimizing IR evaluation measure based on AdaRank 

In this section, we first provide a brief introduction on AdaRank,

nd then elaborate on the proposed three ranking algorithms. Fur-

hermore, we describe the feature generation process FG_A in de-

ail, and discuss the application of the feature generation algo-

ithms to the benchmark learning to rank datasets from LETOR3.0

nd MSLR_WEB10K. 

Learning to rank is a supervised learning process that requires a

raining set for model construction. A typical training set for learn-

ng to rank consists of n queries Q = { q 1 , …, q n }. Each query q i
orresponds to a set of documents d i = { d i 1 , d i 2 , …, d i , nq ( i ) }, which

ave been assigned a set of ground truth labels (relevance degrees)

 i = { y i 1 , y i 2 , …, y i , nq ( i ) } in advance. nq ( i ) represents the number

f documents in the set d i . The whole training set can be denoted

s S = { q i , d i , y i } n i =1 
. 

AdaRank based on AdaBoost uses information retrieval evalua-

ion measures to iteratively update the distribution on the train-

ng queries, and determines the combination coefficient αt at each

ound of iteration. The input of AdaRank comprises the above-

entioned training set S . The parameters of AdaRank include the

iven evaluation measure M and the number of iterations T . At

ach iteration, one weak ranker h t ( t = 1, …, T ) is learned. The weak

ankers in all the iterations are linearly combined to form a strong

anker that is regarded as the final ranking model. The flow of

daRank is shown in Algorithm 2 , in which equal weights (1/ n )

re assigned as the initialization on the data distribution D 1 ( i ) for

ach query i . 

In each round, the algorithm generates a weak ranker h t and

he corresponding combination coefficient αt based on the current

istribution. The algorithm can increase the weight of a certain

eak ranker h t if the ranker yields accurate rankings of the doc-

ments for the queries. The distribution on queries are updated

t the end of each iteration to focus more on the queries whose

orresponding documents are not well ranked by h t in the next
tion measures 

 the measure M using AdaRank 

es the measure M using AdaRank 

d the generated features that directly optimizes the measure M using AdaRank 
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Table 2 

The collection of the feature generation algorithms FG_A. 

AdaRank-NDCG3 AdaRank-NDCG5 AdaRank-NDCG10 

AdaRank-ERR3 AdaRank-ERR5 AdaRank-ERR10 

AdaRank-Q3 AdaRank-Q5 AdaRank-Q10 

AdaRank-MAP AdaRank-MRR 
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teration. In our implementation, we use a single feature vector as

he weak ranker, and use the linear combination of the learned

eak rankers h 1 , …, h t with weights α1 , …, αt to update the dis-

ribution D t + 1 . 
In feature generation, we employ five evaluation measures:

AP, NDCG, MRR, ERR and Q-measure to define the feature gener-

tion algorithms FG_A. Different evaluation measures evaluate the

anking lists of documents from different aspects. Therefore, differ-

nt evaluation scores may jointly contribute to enriching the fea-

ure space of learning to rank. In existing studies ( Xu & Li, 2007 ),

AP and NDCG have been used for model optimization by the

daRank ranking algorithm, which are denoted as AdaRank-MAP

nd AdaRank-NDCG. For the rest of this paper, we use ‘AdaRank-

’ to represent the ranking algorithm that directly optimizes the

valuation measure M using the AdaRank ranking algorithm. In our

tudy, we further extend the AdaRank algorithm to directly opti-

ize MRR, ERR and Q-measure. 

We select these three evaluation measures, because they have

xhibited powerful capability in IR evaluation and widely used to

valuate the performance of IR-related tasks. Specifically, MRR has

een commonly used in the evaluation of question answering sys-

ems. ERR employs the cascade model to define a gain function,

hich has been used for the evaluation on learning to rank chal-

enge organized by Yahoo in 2010 ( Chapelle & Chang, 2011 ). Q-

easure, as a graded version of Average Precision (AP), yields bet-

er evaluation results than the AP-based measures. Based on these

valuation measures, we design eleven feature generation algo-

ithms that are listed in Table 2 . 

In Table 2 , AdaRank-M N represents directly optimizing the

valuation measure M at the cutoff position N based on AdaRank.

he values of N includes 3, 5 and 10, which are widely used in

he evaluation of ranking performance. Take NDCG@3 as an exam-

le. NDCG@3 measures the NDCG value at the top-3 ranked docu-

ents. Top ranked documents are important indicators for evalu-

ting the ranking performance in IR evaluations. Besides, MAP and

RR are not cutoff-based evaluation measures. MAP measures the

ean average precision for all the relevant documents at their cor-

esponding cutoffs, and MRR counts the position of the first ranked

elevant document in the list. Therefore, MAP and MRR don’t need

he parameter N in the evaluation process. In our experiments, we

pply these feature generation algorithms to the benchmark learn-

ng to rank datasets to generate the new features. The detailed

eneration process of these new features are described in the fol-

owing section. 

.3. Learning based on feature generation framework on benchmark 

atasets 

In this section, we describe the application of the proposed

eature generation algorithms on the benchmark datasets, such as

ETOR3.0 and MSLR_WEB10K, for learning to rank. The generated

eatures are integrated with the original features for learning the

anking models. 

The benchmark datasets for learning to rank contain five folds.

ach fold consists of three files, ‘test.txt’, ‘valid.txt’ and ‘train.txt’,

s the test, validation and training sets. The training set is used

o learn the ranking models, the validation set is used to tune

he parameters, and the test set is used to evaluate the ranking
erformance of the learned models. The reported experimental re-

ults are the averaged performance over all the five test sets. We

enerate new features for these three sets based on the above-

entioned eleven feature generation algorithms. The ranking mod-

ls for feature generation are trained on each training set S with

hese algorithms. The learned ranking models are used to predict

he relevant scores on the documents with respect to the query in

he test, validation and training sets. We use the scores to generate

leven dimensional features to enrich the original training, valida-

ion and test sets. The new feature sets for training and testing are

enoted as F_S and F_T, respectively. We examine the effectiveness

f the generated new features for ranking model training in our

xperiments. To further enhance the learned models, we intend to

ombine the generated features with the original features in the

enchmark datasets and used the combined feature set to learn

ore effective ranking models. We believe that the combined fea-

ure set will contribute much to the improvement of ranking per-

ormance. Take the OHSUMED dataset from LETOR3.0 as an exam-

le, the dataset contains 45 dimensional features. We generate 11

ew features to enrich the feature space. The combined feature set

otally contains 56 dimensional features for model training. 

We adopt two ranking algorithms, AdaRank-ERR10 and

daRank-Q10, to learn the final ranking models in our exper-

ments. The ranking models are trained based on both the

enerated feature set and the combined feature set. We select

hese two learning algorithms, because relatively good ranking

erformance can be achieved by them on the validation sets

mong all the algorithms in Table 2 . 

. Experiments and analysis 

.1. Corpora 

We perform a series of experiments on four benchmark

atasets from LETOR3.0 ( Qin et al., 2007 ) and MSLR-WEB10K

 http://research.microsoft.com/en-us/projects/mslr/ ) released by 

icrosoft Research Asia. These datasets are both evenly divided

nto five folds for cross validation. LETOR3.0 consists of three

atasets: OHSUMED, TD2003, and TD2004. The OHSUMED collec-

ion, as a subset of MEDLINE (a database on medical publications),

onsists of 106 queries, 11,303 irrelevant documents, 4837 relevant

ocuments, and 45 dimensional features. The relevance degrees of

ocuments in OHSUMED fall into three levels: definitely relevant,

artially relevant, or irrelevant. The TD2003 dataset contains 50

ueries, 48,655 irrelevant documents, and 516 relevant documents.

he TD2004 dataset consists of 75 queries, 73,726 irrelevant

ocuments, and 4 4 4 relevant documents. Both the TD2003 dataset

nd the TD2004 dataset contain 64 features. The MSLR-WEB10K,

s a set of web data, contains 10,0 0 0 queries. Queries and Uniform

esource Locators (URLs) are characterized by identifiers. Feature

ectors are extracted for query-URL pairs, and annotated with

elevance judgment labels. The relevance judgments are obtained

rom the query log of the commercial web search engine, Mi-

rosoft Bing. The relevance labels take 5 values from 0 (irrelevant)

o 4 (perfectly relevant). MSLR-WEB10K contains 136 dimensional

eature vectors. The statistics of the datasets are shown in Table 3 .

.2. Experimental settings 

We perform three groups of experiments on these benchmark

atasets. The first group of experiments is designed to test the

anking performance of the proposed ranking algorithms without

onsidering the feature generation process. The second group of

xperiments seeks to evaluate the effectiveness of the generated

eatures based on the FG_A algorithms. The third group of exper-

ments is designed to examine the effectiveness of the combined

http://research.microsoft.com/en-us/projects/mslr/
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Table 3 

Statistics of the datasets. 

Dataset Number of queries Dimension of features Scale of relevance 

OHSUMED from LETOR3.0 106 45 3 

TD2003 from LETOR3.0 50 64 3 

TD2004 from LETOR3.0 75 64 3 

MSLR-WEB10K 10,0 0 0 136 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

The ERR@10 and Q@10 values for FG_A algorithms. 

ERR@10 values OHSUMED TD2003 TD2004 

SVMPMAP 0.5244 0.2659 0.3172 

ListNet 0.5615 0.2554 0.3342 

AdaRank-MAP 0.5759 0.2918 0.3706 

AdaRank-NDCG 0.5645 0.2803 0.3517 

AdaRank-ERR10 0.5686 ∗+ 0.2804 ∗+ 0.3537 ∗+ 

AdaRank-MRR 0.5390 ∗ 0.2736 ∗+ 0.3333 ∗

AdaRank-Q10 0.5553 ∗ 0.3153 ∗+ 0.3442 ∗+ 

Q@10 values OHSUMED TD2003 TD2004 

SVMPMAP 0.3245 0.1869 0.1859 

ListNet 0.3544 0.1879 0.1641 

AdaRank-MAP 0.3636 0.2336 0.2126 

AdaRank-NDCG 0.3628 0.1930 0.1867 

AdaRank-ERR10 0.3672 ∗+ 0.2203 ∗+ 0.1843 + 

AdaRank-MRR 0.3415 ∗ 0.2192 ∗+ 0.1820 + 

AdaRank-Q10 0.3566 ∗+ 0.2431 ∗+ 0.1794 + 
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feature set including the original and the generated features. Two

proposed ranking algorithms, AdaRank-ERR10 and AdaRank-Q10,

are used for training the ranking models. The original, generated

and combined feature sets are compared in terms of the ranking

performance by the learned models. Moreover, all the experi-

mental results are compared with the state-of-the-art ranking

algorithms, including AdaRank-MAP, AdaRank-NDCG, SVMMAP,

ListNet and LambdaMART. These algorithms have been proved

to be the most effective in learning to rank tasks ( Wu, Burges,

Svore, & Gao, 2010 ). We use the standard divisions of the training,

test and validation sets in the used datasets for five-fold cross

validation. The training set is used to learn the ranking models,

the validation set is used to tune the parameters, and the test

set is used to evaluate the ranking performance of the learned

models. We report the average performance on the five test sets

in all the folds in our experiments. 

5.3. Evaluation on the proposed three ranking algorithms 

In this section, we present the ranking performance of the pro-

posed ranking algorithms, AdaRank-ERR, AdaRank-MRR, AdaRank-

Q compared with the baseline ranking algorithms. The com-

pared baseline algorithms include the original AdaRank algorithms

(AdaRank-MAP, AdaRank-NDCG) and the state-of-the-art ranking

algorithms SVMMAP and ListNet. We choose the cutoff position

of AdaRank-ERR and AdaRank-Q as 10 for model optimization,

because relatively good performance can be achieved under this

setting. Retrieval performance is evaluated in terms of MAP and

NDCG. The comparisons of retrieval performance on three datasets

from LETOR3.0 are illustrated in Figs. 1–3 . 

From these figures, we observe that both AdaRank-Q10 and

AdaRank-ERR10 outperform AdaRank-MAP and AdaRank- NDCG on

the OHSUMED and TD2003 datasets. AdaRank-MRR only outper-
Fig. 1. The MAP and NDCG@K values for the prop
orms AdaRank-MAP and AdaRank-NDCG on the TD2003 dataset;

he proposed algorithms yield slightly worse performance than

daRank-MAP and AdaRank-NDCG in terms of MAP, NDCG@5 and

DCG@10 on the TD2004 dataset. Comparing with SVMMAP and

istNet, AdaRank-Q10 achieves the best MAP and NDCG@5 val-

es on OHSUMED and the best NDCG values on TD2003, but

ot performs very well on TD2004. On the OHSUMED dataset,

daRank-ERR10 also yields better performance than SVMMAP and

istNet. AdaRank-MRR achieves better performance on TD2003 and

D2004 than OHSUMED. 

To further evaluate the ranking performance of different

daRank-based algorithms, we report the ranking performance in

erms of ERR@10 and Q@10 in Table 4 , where the superscript ‘ ∗’

ndicates significant improvements of our methods over SVMMAP,
osed ranking algorithms on TD2003 dataset. 
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Fig. 2. The MAP and NDCG@K values for the proposed ranking algorithms on OHSUMED dataset. 

Fig. 3. The MAP and NDCG@K values for the proposed ranking algorithms on TD2004 dataset. 
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nd the superscript ‘ + ’ indicates significant improvements of our

ethods over ListNet. 

The experimental results in the table show that AdaRank-ERR10

erforms better than AdaRank-NDCG in terms of ERR@10 on all

he datasets evaluation measure. AdaRank-MAP achieves the best

RR value on the OHSUMED and the TD2004 datasets. AdaRank-

10 achieves the best performance on the TD2003 dataset. For

he Q@10 evaluation measure, AdaRank-ERR10 also achieves the

est performance on OHSUMED and outperforms AdaRank-NDCG

n TD2003. AdaRank-Q10 and AdaRank-MAP achieve the best per-

ormance on TD2003 and TD2004, respectively. 

In general, we conclude that the proposed algorithms AdaRank-

RR and AdaRank-Q are more effective in improving the ranking

erformance than the compared baseline models, particularly

n the OHSUMED and TD2003 datasets. These experimental
esults demonstrate the effectiveness of the proposed AdaRank-

ased algorithms by directly optimizing evaluation measures. Our

lgorithms achieve slightly better performance than AdaRank-MAP

nd AdaRank-NDCG, which indicates that directly optimizing ERR

nd Q-measure contribute more to the ranking performance. Since

he increase in the improvement is still limited, we seek to further

nhance the ranking effectiveness by generating new features for

odel construction. In the next section, we report the experimen-

al results of the ranking models trained on the generated feature

ets. 

.4. Evaluations on the generated feature sets 

In this section, we seek to answer the question that whether

he new generated features can be employed to improve the
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Table 5 

Evaluation results for the FGFIREM on four public learning to rank datasets. 

Ranking performance on OHSUMED dataset MAP NDCG@3 NDCG@5 NDCG@10 ERR@10 Q@10 

SVMMAP ( Yue et al., 2007 ) 0.4453 0.4663 0.4516 0.4319 0.5244 0.3245 

ListNet ( Cao et al., 2007 ) 0.4457 0.4732 0.4432 0.4410 0.5615 0.3544 

AdaRank-MAP ( Xu & Li, 2007 ) 0.4487 0.4682 0.4613 0.4429 0.5759 0.3636 

AdaRank-NDCG ( Xu & Li, 2007 ) 0.4498 0.4790 0.4673 0.4496 0.5645 0.3628 

AdaRank-ERR10 0.4550 ∗+ 0.4843 ∗+ 0.4676 ∗+ 0.4597 ∗+ 0.5686 ∗+ 0.3672 ∗+ 

AdaRank-Q10 0.4583 ∗+ 0.4829 ∗+ 0.4722 ∗+ 0.4529 ∗+ 0.5553 ∗ 0.3566 ∗+ 

AdaRank-ERR10 ∗ 0.4587 ∗+ 0.4751 ∗+ 0.4653 ∗+ 0.4512 ∗+ 0.5502 ∗ 0.3571 ∗+ 

AdaRank-Q10 ∗ 0.4571 ∗+ 0.4708 ∗ 0.4607 ∗+ 0.4472 ∗+ 0.5475 ∗ 0.3568 ∗+ 

AdaRank-ERR10 ∗∗ 0.4575 ∗+ 0.4705 ∗ 0.4590 ∗+ 0.4485 ∗+ 0.5531 ∗ 0.3564 ∗+ 

AdaRank-Q10 ∗∗ 0.4579 ∗+ 0.4889 ∗+ 0.4724 ∗+ 0.4576 ∗+ 0.5639 ∗+ 0.3646 ∗+ 

Ranking performance on TD2003 dataset MAP NDCG@3 NDCG@5 NDCG@10 ERR@10 Q@10 

SVMMAP ( Yue et al., 2007 ) 0.2445 0.3199 0.3318 0.3282 0.2659 0.1869 

ListNet ( Cao et al., 2007 ) 0.2753 0.3365 0.3393 0.3484 0.2554 0.1879 

AdaRank-MAP ( Xu & Li, 2007 ) 0.2283 0.3067 0.3029 0.3069 0.2918 0.2336 

AdaRank-NDCG ( Xu & Li, 2007 ) 0.2368 0.2908 0.2939 0.3036 0.2803 0.1930 

AdaRank-ERR10 0.2493 ∗ 0.3286 ∗ 0.3199 0.3231 0.2804 ∗+ 0.2203 ∗+ 

AdaRank-Q10 0.2432 0.3748 ∗+ 0.3628 ∗+ 0.3461 ∗ 0.3153 ∗+ 0.2431 ∗+ 

AdaRank-ERR10 ∗ 0.2681 ∗ 0.3729 ∗+ 0.3563 ∗+ 0.3512 ∗+ 0.3158 ∗+ 0.2485 ∗+ 

AdaRank-Q10 ∗ 0.2766 ∗ 0.3857 ∗+ 0.3802 ∗+ 0.3643 ∗+ 0.3181 ∗+ 0.2581 ∗+ 

AdaRank-ERR10 ∗∗ 0.2811 ∗+ 0.4155 ∗+ 0.4012 ∗+ 0.3841 ∗+ 0.3368 ∗+ 0.2724 ∗+ 

AdaRank-Q10 ∗∗ 0.2838 ∗+ 0.4003 ∗+ 0.3928 ∗+ 0.3769 ∗+ 0.3386 ∗+ 0.2723 ∗+ 

Ranking performance on TD2004 dataset MAP NDCG@3 NDCG@5 NDCG@10 ERR@10 Q@10 

SVMMAP ( Yue et al., 2007 ) 0.2049 0.3035 0.3007 0.2907 0.3172 0.1859 

ListNet ( Cao et al., 2007 ) 0.2231 0.3573 0.3325 0.3175 0.3342 0.1641 

AdaRank-MAP ( Xu & Li, 2007 ) 0.2189 0.3757 0.3602 0.3285 0.3706 0.2126 

AdaRank-NDCG ( Xu & Li, 2007 ) 0.1936 0.3688 0.3514 0.3163 0.3517 0.1867 

AdaRank-ERR10 0.1854 0.3786 ∗+ 0.3383 ∗+ 0.2948 ∗ 0.3537 ∗+ 0.1843 + 

AdaRank-Q10 0.1855 0.3696 ∗+ 0.3234 ∗ 0.2876 0.3442 ∗+ 0.1794 + 

AdaRank-ERR10 ∗ 0.2368 ∗+ 0.4166 ∗+ 0.3764 ∗+ 0.3397 ∗+ 0.3836 ∗+ 0.2189 ∗+ 

AdaRank-Q10 ∗ 0.2366 ∗+ 0.4134 ∗+ 0.3759 ∗+ 0.3377 ∗+ 0.3830 ∗+ 0.2175 ∗+ 

AdaRank-ERR10 ∗∗ 0.2386 ∗+ 0.4184 ∗+ 0.3866 ∗+ 0.3487 ∗+ 0.3826 ∗+ 0.2248 ∗+ 

AdaRank-Q10 ∗∗ 0.2401 ∗+ 0.4115 ∗+ 0.3775 ∗+ 0.3577 ∗+ 0.3815 ∗+ 0.2323 ∗+ 

Ranking performance on MSLR-WEB10K dataset MAP NDCG@3 NDCG@5 NDCG@10 ERR@10 Q@10 

LambdaMART ( Wu et al, 2010 ) 0.5546 0.5675 0.5524 0.5324 0.3524 0.3961 

AdaRank-MAP 0.5927 0.3753 0.3768 0.3879 0.4734 0.3404 

AdaRank-NDCG 0.5910 0.3834 0.3832 0.3907 0.4844 0.3419 

AdaRank-ERR10 0.5909 ∗ 0.3826 0.3817 0.3905 0.4835 ∗ 0.3414 

AdaRank-Q10 0.5931 ∗ 0.3821 0.3835 0.3940 0.4831 ∗ 0.3458 

AdaRank-ERR10 ∗ 0.5939 ∗ 0.3838 0.3847 0.3950 0.4852 ∗ 0.3463 

AdaRank-Q10 ∗ 0.5941 ∗ 0.3846 0.3854 0.3953 0.4857 ∗ 0.3468 

AdaRank-ERR10 ∗∗ 0.5945 ∗ 0.3843 0.3851 0.3951 0.4850 ∗ 0.3474 

AdaRank-Q10 ∗∗ 0.5941 ∗ 0.3841 0.3846 0.3952 0.4845 ∗ 0.3468 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 

The workflow of the FGFIREM framework. 

Input: Training set S ; Test set T ; original feature set O_S; 

Input: Learning to rank algorithm(s) FG_A; 

Input: Learning to rank algorithm R_A; 

Component 1. Feature generation 

1: Learn () on S with FG_A 

2: Score () on S and T , generate new feature set F_S and F_T 

3: Combine (O_S, F_S) = > E_S, Combine (T, F_T) = > E_T 

End component 1. 

Component 2. Ranking model learning 

1: Learn () on F_S, E_S with R_A 

2: Score () on F_T, E_T with learned model 

3: Eval () on F_T, E_T 

End component 2. 

Output: Evaluation results. 

s  

t  

a  

r  

i  

L  
ranking performance. We use the proposed framework FGFIREM to

generate new features based on the feature generation algorithms

in Table 2 . The two best-performed algorithms, AdaRank-ERR10

and AdaRank-Q10, from the previous experiments are adopted as

the final learning algorithms to train ranking models on the gener-

ated feature sets. We denote the experimental results generated by

these two learning algorithms as AdaRank-ERR10 ∗ and AdaRank-

Q10 ∗, respectively. It is worth noting that the two components in

our framework, feature generation and ranking model training, can

jointly contribute to improving ranking performance. To distinguish

the contribution made by these two components, we also compare

the results by AdaRank-ERR10 ∗ and AdaRank-Q10 ∗ on the gener-

ated feature sets with the results by AdaRank-ERR10 and AdaRank-

Q10 on the original feature sets. 

Table 5 shows the comparisons of results on the feature gen-

eration models, AdaRank-ERR10, AdaRank-Q10 and other learning

to rank algorithms. For the three datasets from LETOR3.0, we first

compare our models with the published evaluation results in terms

of MAP and NDCG. Since there are no published evaluation re-

sults by ERR@k and Q@k on these datasets, we adopt the RankLib

( http://www.cs.umass.edu/ ∼vdang/ranklib.html ) toolkit to obtain

the evaluation results for the ListNet algorithm, and the svmmap
oftware package ( http://projects.yisongyue.com/svmmap/ ) to ob-

ain the evaluation results for the SVMMAP algorithm by ERR@k

nd Q@k. For the MSLR-WEB10K dataset, only one published

esults based on the LambdaMART algorithm are available, which

s obtained using the jforests toolkit ( Ganjisaffar, Caruana, &

opes, 2011 ). Therefore, we only compare with the results of

http://www.cs.umass.edu/~vdang/ranklib.html
http://projects.yisongyue.com/svmmap/
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Algorithm 2 

The AdaRank-M algorithm. 

Input: S = { q i , d i , y i } n i =1 
the number of iterations T , the evaluation metric M 

Initialize the data distribution D 1 ( i ) = 1/ n 

For t = 1, …, T 

Train a weak ranker h t based on the distribution Dt on training set S . 

Choose αt αt = 

1 
2 

· ln 
∑ n 

i =1 D t (i )( 1+ M( h t , d i , y i ) ) ∑ n 
i =1 D t (i )( 1 −M( h t , d i , y i ) ) 

Update D t + 1 
D t+1 (i ) = 

exp ( −M( 
∑ t 

z=1 αz h z , d i , y i ) ) ∑ n 
j=1 exp ( −M( 

∑ t 
z=1 αz h z , d j , y j ) ) 

End for 

Output : 
∑ T 

t=1 αt h t 

L  

t  

d  

p  

n  

L  

i  

(  

m  

d  

o

 

(  

t  

a  

Q  

b  

t  

t  

M  

Q  

t  

b  

s  

u  

d

 

a  

Q  

a  

u  

m  

p  

f  

o  

c  

s  

f

 

r  

w  

1  

Q  

E  

t  

m  

f

i

 

c  

(  

E  

r  

b  

E  

s  

w

 

b  

o  

f  

a  

b  

r  

c  

a  

e  

g  

i  

t  

i  

f  

f

5

 

t  

t  

W  

o

 

i  

t  

r  

r

 

t  

Q  

o  

s

(  

E  

o  

t  

d  

A

a  

M  

f  

A  

s  

s  

h  

o  

w  

u  

l

 

b  

c  

o  

f  

p  

t  

a  

f  

i  

d  

t

ambdaMART on the MSLR-WEB10K dataset. We directly compare

he evaluation results from the existing studies instead of repro-

ucing the algorithms in our experiments. Since we didn’t find

ublished evaluation results using LambdaMART on LETOR, we do

ot compare our method with the algorithm on datasets from

ETOR. We compare the results using statistical significant test,

.e., two-tailed paired Student’s t tests with 95% confidential level

 p < 0.05), where the superscript ’ ∗’ indicates significant improve-

ents of our methods over SVMMAP or LambdaMART on different

atasets, and the superscript ‘ + ’ indicates significant improvements

f our methods over ListNet. 

On the OHSUMED dataset, AdaRank-ERR10 ∗ outperforms ListNet

 p = 0.033) and achieves the best MAP value. AdaRank-Q10 also ob-

ains a good ranking performance in terms of MAP and NDCG@5,

nd AdaRank-ERR10 yields the highest NDCG@3, NDCG@10 and

@10 values. All the four proposed algorithms outperform other

aseline models in terms of MAP. These results indicate that

he proposed AdaRank-based algorithms and our feature genera-

ion framework can consistently improve the ranking performance.

eanwhile, we observe that AdaRank-Q10 outperforms AdaRank-

10 ∗, which indicates that the ranking models solely based on

he generated features yields slightly worse results than the model

ased on the original features. This finding may be because the

cale of the OHSUMED dataset is relatively smaller than the other

sed datasets, which limits the extent of improvement to a certain

egree. 

On the TD2003 dataset, we observe that all the four proposed

lgorithms outperform other baseline models by MAP. AdaRank-

10 ∗ outperforms ListNet ( p = 0.007) and SVMMAP ( p < 0.05),

chieving the best ranking performance in terms of all the six eval-

ation measures. The improvement in the average ranking perfor-

ance is about 13.8% over the ListNet algorithm and 5.2% over the

roposed AdaRank-Q10 algorithm. AdaRank-ERR10 ∗ also outper-

orms other state-of-the-art learning to rank algorithms in terms

f most evaluation measures, which achieves 11.1% improvement

ompared with the proposed AdaRank-ERR10 algorithm. These re-

ults show that the proposed FGFIREM framework can generate ef-

ective features for the improvement of the ranking performance. 

On the TD2004 dataset, AdaRank-ERR10 ∗ achieves the best

anking performance in terms of all the six evaluation measures,

hich significantly outperforms ListNet ( p = 0.001) and produces

3.7% improvement over the AdaRank-ERR10 algorithm. AdaRank-

10 ∗ yields comparable ranking performance with AdaRank-

RR10 ∗, achieving the second best ranking performance among all

he compared models. AdaRank-Q10 ∗ improves the ranking perfor-

ance by 13.6% compared with ListNet. The improvements of the

eature generation algorithms AdaRank-Q10 ∗ and AdaRank-ERR10 ∗

ndicate the effectiveness of the proposed FGFIREM framework. 

On the new MSLR-WEB10K dataset, AdaRank-Q10 ∗ signifi-

antly outperforms AdaRank-Q10 ( p = 0.008) and AdaRank-MAP

 p = 0.017), achieving the best performance in terms of MAP and

RR@10 among all the baseline models. The LambdaMART algo-

ithm, as the best-performed model on this dataset, achieves the

est performance in terms of other evaluation measures. AdaRank-
RR10 ∗ also yields a good performance on this dataset. These re-

ults indicate that our AdaRank-based feature generation frame-

ork can achieve the state-of-the-art ranking performance. 

From the experimental results in Table 5 , we observe that

oth AdaRank-ERR10 ∗ and AdaRank-Q10 ∗ perform well, particularly

n the TD2003 and TD2004 datasets. The improvements of our

ramework over baselines on TD20 03, TD20 04 and MSLR-WEB10K

re consistent. AdaRank-Q10 ∗ and AdaRank-ERR10 ∗ generally yield

etter performances than AdaRank-Q10 and AdaRank-ERR10. The

anking performances of AdaRank-ERR10 ∗ and AdaRank-Q10 ∗ are

omparable to each other. These findings indicate that the gener-

ted features by our feature generation framework FGFIREM are

ffective in improving the ranking performance. Since both the

enerated features and original features contribute to the rank-

ng performance based on the learned ranking models, we believe

hese two feature sets can capture different aspects of the rank-

ng information in model training. Therefore, we combine them to

orm a merged feature set for model training, and examine the ef-

ectiveness of the learned models in the section below. 

.5. Evaluations on the combined feature sets 

In this section, we seek to answer the question that whether

he combined feature set with both the generated features and

he original features can further improve the ranking performance.

e conduct experiments based on the combined feature sets

n the datasets from LETOR3.0 and MSLR-WEB10K. 

We also employ AdaRank-ERR10 and AdaRank-Q10 as our learn-

ng algorithms to train ranking models. We denote the results ob-

ained from the combined feature sets by these two learning algo-

ithms as AdaRank-ERR10 ∗∗ and AdaRank-Q10 ∗∗. The experimental

esults are also shown in Table 5 . 

From Table 5 , we observe that AdaRank-ERR10 ∗ achieves

he highest MAP value on the OHSUMED dataset. AdaRank-

10 ∗∗ yields the best ranking performance in terms of the

ther five evaluation measures except MAP. The t -test results

how that AdaRank-Q10 ∗∗ significantly outperforms AdaRank-Q10 ∗

 p = 0.004), but AdaRank-ERR10 ∗∗ does not outperform AdaRank-

RR10 ∗. The results suggest that the ranking performance based

n the combined features ( ∗∗) does not always higher than

hat based only on the generated features on the OHSUMED

ataset. On TD2003 and TD2004 datasets, we observe that both

daRank-Q10 ∗∗ and AdaRank-ERR10 ∗∗ outperform AdaRank-Q10 ∗

nd AdaRank-ERR10 ∗. We observe a similar tendency on the

SLR-WEB10K dataset, on which AdaRank-Q10 ∗∗ does not outper-

orm AdaRank-Q10 ∗, but AdaRank-ERR 

∗∗ significantly outperforms

daRank-ERR10 ∗ ( p = 0.035), although the improvement seems

maller than those on the other datasets. We attribute the rea-

ons for less improvement on the MSLR-WEB10K dataset to the

eterogeneity of the queries in the dataset. MSLR-WEB10K consists

f a large scale of heterogeneous queries from web search logs,

hich is different from the homogeneous queries on the other

sed datasets. Therefore, the improvements on the dataset may be

imited to a certain extent. 

The experimental results in the table indicate that the com-

ined features can improve the ranking performance in most cir-

umstances. Combined with the previous results, we conclude that

ur feature generation framework FGFIREM can generate effective

eatures and improve the ranking performance. However, the im-

rovement in ranking performance based on the combined fea-

ures does not always higher than that based only on the gener-

ted features. The experimental results show that the combined

eatures can improve the ranking performance, but the extent of

mprovement is not remarkable. We provide further analysis and

iscussion of the proposed framework in the next section for fu-

ure optimization of our methods. 
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5.6. Experimental analysis 

In this section, we further analyze the experimental results and

provide the possible reasons for the improvement of ranking per-

formance. In the above sections, we present three groups of exper-

iments. The first group of experiments focuses on the first com-

ponent of our FGFIREM framework, which extends the AdaRank

algorithm to three other evaluation measures, MRR, ERR and Q-

measure. From the experimental results, we conclude that the ex-

tended AdaRank algorithm does improve ranking performance in

most used datasets. A possible reason for this finding lies that

AdaRank belongs to the listwise approach, which generates the

ranking model through a linear combination of weak rankers. ERR

and Q-measure also evaluate the ranking performance from a list-

wise perspective. Specifically, ERR based on the cascade model

considers the dependency relationship among documents in the

ranking list, and Q-measure, as a graded-relevance version of aver-

age precision, inherits both the reliability of average precision and

the multi-grade relevance capability of average weighted precision.

Therefore, employing the AdaRank algorithm to optimizing these

evaluation measures yields a better ranking performance. 

The second group of experiments utilizes the AdaRank-ERR10

and AdaRank-Q10 as the learning algorithms to train ranking mod-

els on the generated feature sets by FGFIREM. The experimental

results indicates that the generated features indeed help improve

the ranking performance. We attribute the improvement to the

good property of the boosting mechinism of AdaRank, which uses

weak rankers to consistently boosting the ranking performance.

Our framework also learns from the boosting idea to generate

new features by directly optimizing five evaluation measures using

AdaRank. The experimental results show that the generated fea-

tures can improve the ranking performance effectively. 

The third group of experiments are designed to examine the

effectiveness of the combined feature sets that include the original

features and the new generated features. The experimental results

show that the combined features contribute much to improving

the ranking performance in most circumstances. This is because

the combined features can simultaneously capture the ranking in-

formation through both the orignal and the generated features for

model construction, therefore enhancing the ranking performance 

From the experimental results, we can conclude that our FG-

FIREM framework improves the ranking performance over the

state-of-the-art learning to rank algorithms in terms of most used

evaluation measures. Besides, we further analyze the time com-

plexity based on the workflow of FGFIREM. The time complexity of

our framework depends on the boosting-based feature generation

algorithms. The time complexity of our framework is O(G ·( F + T )

·n ·mlogm) in the process of feature generation, where G denotes

the number of feature generation algorithms, F denotes the num-

ber of feature dimensions, T denotes the iterations, n denotes the

number of queries in training data, and m is the maximum number

of documents for all the queries in training data. The experimental

results indicate that the ranking performance over the combined

features is not always higher than that over the generated fea-

tures by FGFIREM, and meanwhile learning ranking models on the

combined feature sets needs more memory and time. Therefore,

the real IR systems using the proposed framework should balance

the relationship between effectiveness and efficiency for more im-

provement in the overall performance. 

6. Conclusions and future work 

In this paper, we focus on the problem that whether the

new generated features can help improve ranking performance for

learning to rank. We propose a feature generation framework FG-

FIREM to tackle the problem. FGFIREM utilizes learning to rank
lgorithms to generate better features from the training data for

odel construction. Specifically, we first propose three ranking al-

orithms based on the AdaRank algorithm by directly optimizing

RR, ERR and Q-measure. We then use the proposed algorithms

o generate effective ranking features, and learn ranking models

ased on both the generated feature sets and the combined feature

ets, respectively. We evaluate our framework on four benchmark

atasets from LETOR3.0 and MSLR-WEB10K. The experimental re-

ults demonstrate that FGFIREM can generate better features and

mprove the ranking performance. The proposed FGFIREM frame-

ork based on the generated features and the original features

rovides an approach to enrich the feature space of learning to

ank. The proposed algorithms AdaRank-ERR, AdaRank-MRR and

daRank-Q together with the feature generation framework can of-

er both the new idea to improve the other ranking approaches and

he effective features to train ranking models. Our future work will

e carried out to generate better features for other learning to rank

lgorithms to improve the ranking performance. 
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